Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 481
Filtrar
1.
J Virol ; 96(3): e0165321, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34788083

RESUMO

Rhesus cytomegalovirus (RhCMV) infection of rhesus macaques (Macaca mulatta) is a valuable nonhuman primate model of human CMV (HCMV) persistence and pathogenesis. In vivo studies predominantly use tissue culture-adapted variants of RhCMV that contain multiple genetic mutations compared to wild-type (WT) RhCMV. In many studies, animals have been inoculated by nonnatural routes (e.g., subcutaneous, intravenous) that do not recapitulate disease progression via the normative route of mucosal exposure. Accordingly, the natural history of RhCMV would be more accurately reproduced by infecting macaques with strains of RhCMV that reflect the WT genome using natural routes of mucosal transmission. Here, we tested two WT-like RhCMV strains, UCD52 and UCD59, and demonstrated that systemic infection and frequent, high-titer viral shedding in bodily fluids occurred following oral inoculation. RhCMV disseminated to a broad range of tissues, including the central nervous system and reproductive organs. Commonly infected tissues included the thymus, spleen, lymph nodes, kidneys, bladder, and salivary glands. Histological examination revealed prominent nodular hyperplasia in spleens and variable levels of lymphoid lymphofollicular hyperplasia in lymph nodes. One of six inoculated animals had limited viral dissemination and shedding, with commensurately weak antibody responses to RhCMV antigens. These data suggest that long-term RhCMV infection parameters might be restricted by local innate factors and/or de novo host immune responses in a minority of primary infections. Together, we have established an oral RhCMV infection model that mimics natural HCMV infection. The virological and immunological parameters characterized in this study will greatly inform HCMV vaccine designs for human immunization. IMPORTANCE Human cytomegalovirus (HCMV) is globally ubiquitous with high seroprevalence rates in all communities. HCMV infections can occur vertically following mother-to-fetus transmission across the placenta and horizontally following shedding of virus in bodily fluids in HCMV-infected hosts and subsequent exposure of susceptible individuals to virus-laden fluids. Intrauterine HCMV has long been recognized as an infectious threat to fetal growth and development. Since vertical HCMV infections occur following horizontal HCMV transmission to the pregnant mother, the nonhuman primate model of HCMV pathogenesis was used to characterize the virological and immunological parameters of infection following primary mucosal exposures to rhesus cytomegalovirus.


Assuntos
Infecções por Citomegalovirus/veterinária , Citomegalovirus/fisiologia , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Doenças dos Macacos/imunologia , Doenças dos Macacos/virologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Biópsia , DNA Viral , Suscetibilidade a Doenças/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunoglobulina G/imunologia , Imuno-Histoquímica , Macaca mulatta , Doenças dos Macacos/patologia , Doenças dos Macacos/transmissão , Fases de Leitura Aberta , Especificidade de Órgãos , Carga Viral , Viremia , Eliminação de Partículas Virais
2.
PLoS Pathog ; 17(12): e1010162, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34929014

RESUMO

The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 disease, has killed over five million people worldwide as of December 2021 with infections rising again due to the emergence of highly transmissible variants. Animal models that faithfully recapitulate human disease are critical for assessing SARS-CoV-2 viral and immune dynamics, for understanding mechanisms of disease, and for testing vaccines and therapeutics. Pigtail macaques (PTM, Macaca nemestrina) demonstrate a rapid and severe disease course when infected with simian immunodeficiency virus (SIV), including the development of severe cardiovascular symptoms that are pertinent to COVID-19 manifestations in humans. We thus proposed this species may likewise exhibit severe COVID-19 disease upon infection with SARS-CoV-2. Here, we extensively studied a cohort of SARS-CoV-2-infected PTM euthanized either 6- or 21-days after respiratory viral challenge. We show that PTM demonstrate largely mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, including CD4+ T cells that upregulate CD8 and express cytotoxic molecules, as well as virus-targeting T cells that were predominantly CD4+. We also noted increases in inflammatory and coagulation markers in blood, pulmonary pathologic lesions, and the development of neutralizing antibodies. Together, our data demonstrate that SARS-CoV-2 infection of PTM recapitulates important features of COVID-19 and reveals new immune and viral dynamics and thus may serve as a useful animal model for studying pathogenesis and testing vaccines and therapeutics.


Assuntos
COVID-19 , Modelos Animais de Doenças , Macaca nemestrina , Doenças dos Macacos/virologia , Animais , COVID-19/imunologia , COVID-19/patologia , COVID-19/fisiopatologia , COVID-19/virologia , Humanos , Imunidade Humoral , Pulmão/imunologia , Pulmão/virologia , Masculino , Doenças dos Macacos/imunologia , Doenças dos Macacos/patologia , Doenças dos Macacos/fisiopatologia , Linfócitos T/imunologia
3.
Gene ; 800: 145837, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34274469

RESUMO

Diarrhoea is a widespread disease in captive rhesus macaques (Macaca mulatta) and a small proportion of individuals may experience persistent diarrhoea. Persistent diarrhoea can lead to a compromised immune system, intestinal inflammation and malnutrition. We analyzed the blood transcriptomes of 10 persistent diarrhoeal and 12 healthy rhesus macaques to investigate the gene expression differences between the two groups. We identified 330 DEGs between persistent diarrhoeal and healthy rhesus macaques. The 211 up-regulated DEGs in the diarrhoeal group were mainly enriched in immune-related and interleukin-related categories. Among them, three interleukin (IL) 18 related DEGs (IL18, IL18R1, and IL18BP) played important roles in actively regulating pro-inflammatory responses. Interestingly, the up- and down-regulated DEGs were both enriched in the same immune-related categories. Thus, we applied a new method to examine the distribution of DEGs in all child categories. We found that interleukin and T cell related categories were mainly occupied by up-regulated DEGs, while immunoglobulin production and B cell related categories were enriched by down-regulated DEGs. We also compared rhesus macaque DEGs with the DEGs of inflammatory bowel disease (IBD) humans and IBD mouse models and found that 30-40% of macaque DEGs were shared with IBD humans and mouse models. In conclusion, our results showed that there were significant immune differences between persistent diarrhoeal rhesus macaques and healthy macaques, which was similar to the expression differences in IBD patients and mouse models.


Assuntos
Diarreia/veterinária , Doenças Inflamatórias Intestinais/genética , Doenças dos Macacos/genética , Animais , Estudos de Casos e Controles , Diarreia/genética , Diarreia/imunologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Doenças Inflamatórias Intestinais/etiologia , Interleucinas/genética , Macaca mulatta , Masculino , Camundongos , Doenças dos Macacos/imunologia
4.
PLoS Pathog ; 17(7): e1009668, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34280241

RESUMO

SARS-CoV-2 infection presents clinical manifestations ranging from asymptomatic to fatal respiratory failure. Despite the induction of functional SARS-CoV-2-specific CD8+ T-cell responses in convalescent individuals, the role of virus-specific CD8+ T-cell responses in the control of SARS-CoV-2 replication remains unknown. In the present study, we show that subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ T cells in cynomolgus macaques. Eight macaques were intranasally inoculated with 105 or 106 TCID50 of SARS-CoV-2, and three of the eight macaques were treated with a monoclonal anti-CD8 antibody on days 5 and 7 post-infection. In these three macaques, CD8+ T cells were undetectable on day 7 and thereafter, while virus-specific CD8+ T-cell responses were induced in the remaining five untreated animals. Viral RNA was detected in nasopharyngeal swabs for 10-17 days post-infection in all macaques, and the kinetics of viral RNA levels in pharyngeal swabs and plasma neutralizing antibody titers were comparable between the anti-CD8 antibody treated and untreated animals. SARS-CoV-2 RNA was detected in the pharyngeal mucosa and/or retropharyngeal lymph node obtained at necropsy on day 21 in two of the untreated group but undetectable in all macaques treated with anti-CD8 antibody. CD8+ T-cell responses may contribute to viral control in SARS-CoV-2 infection, but our results indicate possible containment of subacute viral replication in the absence of CD8+ T cells, implying that CD8+ T-cell dysfunction may not solely lead to viral control failure.


Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/veterinária , Macaca fascicularis/imunologia , Macaca fascicularis/virologia , Doenças dos Macacos/imunologia , Doenças dos Macacos/virologia , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/virologia , Modelos Animais de Doenças , Feminino , Humanos , Cinética , Depleção Linfocítica/veterinária , Masculino , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , Replicação Viral/imunologia
5.
Emerg Microbes Infect ; 10(1): 1320-1330, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34112056

RESUMO

Ebola virus (EBOV) is a negative single-stranded RNA virus within the Filoviridae family and the causative agent of Ebola virus disease (EVD). Nonhuman primates (NHPs), including cynomolgus and rhesus macaques, are considered the gold standard animal model to interrogate mechanisms of EBOV pathogenesis. However, despite significant genetic similarity (>90%), NHP species display different clinical presentation following EBOV infection, notably a ∼1-2 days delay in disease progression. Consequently, evaluation of therapeutics is generally conducted in rhesus macaques, whereas cynomolgus macaques are utilized to determine efficacy of preventative treatments, notably vaccines. This observation is in line with reported differences in disease severity and host responses between these two NHP following infection with simian varicella virus, influenza A and SARS-CoV-2. However, the molecular underpinnings of these differential outcomes following viral infections remain poorly defined. In this study, we compared published transcriptional profiles obtained from cynomolgus and rhesus macaques infected with the EBOV-Makona Guinea C07 using bivariate and regression analyses to elucidate differences in host responses. We report the presence of a shared core of differentially expressed genes (DEGs) reflecting EVD pathology, including aberrant inflammation, lymphopenia, and coagulopathy. However, the magnitudes of change differed between the two macaque species. These findings suggest that the differential clinical presentation of EVD in these two species is mediated by altered transcriptional responses.


Assuntos
Regulação da Expressão Gênica/imunologia , Doença pelo Vírus Ebola/veterinária , Macaca fascicularis , Macaca mulatta , Doenças dos Macacos/imunologia , Transcrição Gênica/imunologia , Animais , COVID-19 , Ebolavirus , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/mortalidade , Humanos , Imunidade , Doenças dos Macacos/genética , Doenças dos Macacos/mortalidade , RNA Viral/metabolismo , SARS-CoV-2 , Especificidade da Espécie
6.
PLoS One ; 16(4): e0250317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886668

RESUMO

To identify immunodominant antigens that elicit a humoral immune response following a primary and a secondary genital infection, rhesus monkeys were inoculated cervically with Chlamydia trachomatis serovar D. Serum samples were collected and probed with a protein microarray expressing 864/894 (96.4%) of the open reading frames of the C. trachomatis serovar D genome. The antibody response to the primary infection was analyzed in 72 serum samples from 12 inoculated monkeys. The following criteria were utilized to identify immunodominant antigens: proteins found to be recognized by at least 75% (9/12) of the infected monkeys with at least 15% elevations in signal intensity from week 0 to week 8 post infection. All infected monkeys developed Chlamydia specific serum antibodies. Eight proteins satisfied the selection criteria for immunodominant antigens: CT242 (OmpH-like protein), CT541 (mip), CT681 (ompA), CT381 (artJ), CT443 (omcB), CT119 (incA), CT486 (fliY), and CT110 (groEL). Of these, three antigens, CT119, CT486 and CT381, were not previously identified as immunodominant antigens using non-human primate sera. Following the secondary infection, the antibody responses to the eight immunodominant antigens were analyzed and found to be quite different in intensity and duration to the primary infection. In conclusion, these eight immunodominant antigens can now be tested for their ability to identify individuals with a primary C. trachomatis genital infection and to design vaccine strategies to protect against a primary infection with this pathogen.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/genética , Epitopos Imunodominantes/imunologia , Doenças dos Macacos/imunologia , Doenças Vaginais/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/sangue , Linfócitos B/imunologia , Proteínas de Bactérias/sangue , Infecções por Chlamydia/sangue , Infecções por Chlamydia/microbiologia , Feminino , Genoma Bacteriano , Epitopos Imunodominantes/sangue , Macaca mulatta , Doenças dos Macacos/sangue , Doenças dos Macacos/microbiologia , Fases de Leitura Aberta , Vagina/imunologia , Vagina/microbiologia , Doenças Vaginais/sangue , Doenças Vaginais/microbiologia
7.
Front Immunol ; 12: 647398, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717202

RESUMO

HIV-associated inflammation has been implicated in the premature aging and increased risk of age-associated comorbidities in cART-treated individuals. However, the immune mechanisms underlying the chronic inflammatory state of cART-suppressed HIV infection remain unclear. Here, we investigated the role of γδT cells, a group of innate IL-17 producing T lymphocytes, in the development of systemic inflammation and leaky gut phenotype during cART-suppressed SIV infection of macaques. Plasma levels of inflammatory mediators, intestinal epithelial barrier disruption (IEBD) and microbial translocation (MT) biomarkers, and Th1/Th17-type cytokine functions were longitudinally assessed in blood and gut mucosa of SIV-infected, cART-suppressed macaques. Among the various gut mucosal IL-17/IL-22-producing T lymphocyte subsets including Th17, γδT, CD161+ CD8+ T, and MAIT cells, a specific decline in the Vδ2 subset of γδT cells and impaired IL-17/IL-22 production in γδT cells significantly correlated with the subsequent increase in plasma IEBD/MT markers (IFABP, LPS-binding protein, and sCD14) and pro-inflammatory cytokines (IL-6, IL-1ß, IP10, etc.) despite continued viral suppression during long-term cART. Further, the plasma inflammatory cytokine signature during long-term cART was distinct from acute SIV infection and resembled the inflammatory cytokine profile of uninfected aging (inflammaging) macaques. Overall, our data suggest that during cART-suppressed chronic SIV infection, dysregulation of IL-17/IL-22 cytokine effector functions and decline of Vδ2 γδT cell subsets may contribute to gut epithelial barrier disruption and development of a distinct plasma inflammatory signature characteristic of inflammaging. Our results advance the current understanding of the impact of chronic HIV/SIV infection on γδT cell functions and demonstrate that in the setting of long-term cART, the loss of epithelial barrier-protective functions of Vδ2 T cells and ensuing IEBD/MT occurs before the hallmark expansion of Vδ1 subsets and skewed Vδ2/Vδ1 ratio. Thus, our work suggests that novel therapeutic approaches toward restoring IL-17/IL-22 cytokine functions of intestinal Vδ2 T cells may be beneficial in preserving gut epithelial barrier function and reducing chronic inflammation in HIV-infected individuals.


Assuntos
Antirretrovirais/uso terapêutico , Interleucina-17/sangue , Interleucinas/sangue , Mucosa Intestinal/imunologia , Linfócitos Intraepiteliais/imunologia , Doenças dos Macacos/tratamento farmacológico , Doenças dos Macacos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia , Animais , Biomarcadores/sangue , Doença Crônica/tratamento farmacológico , Quimioterapia Combinada/métodos , Feminino , Inflamação/sangue , Inflamação/imunologia , Macaca mulatta , Doenças dos Macacos/virologia , Transdução de Sinais/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/virologia
8.
Sci Immunol ; 6(57)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766849

RESUMO

Simian immunodeficiency virus (SIV) insert-expressing, 68-1 rhesus cytomegalovirus (RhCMV/SIV) vectors elicit major histocompatibility complex E (MHC-E)- and MHC-II-restricted, SIV-specific CD8+ T cell responses, but the basis of these unconventional responses and their contribution to demonstrated vaccine efficacy against SIV challenge in the rhesus monkeys (RMs) have not been characterized. We show that these unconventional responses resulted from a chance genetic rearrangement in 68-1 RhCMV that abrogated the function of eight distinct immunomodulatory gene products encoded in two RhCMV genomic regions (Rh157.5/Rh157.4 and Rh158-161), revealing three patterns of unconventional response inhibition. Differential repair of these genes with either RhCMV-derived or orthologous human CMV (HCMV)-derived sequences (UL128/UL130; UL146/UL147) leads to either of two distinct CD8+ T cell response types-MHC-Ia-restricted only or a mix of MHC-II- and MHC-Ia-restricted CD8+ T cells. Response magnitude and functional differentiation are similar to RhCMV 68-1, but neither alternative response type mediated protection against SIV challenge. These findings implicate MHC-E-restricted CD8+ T cell responses as mediators of anti-SIV efficacy and indicate that translation of RhCMV/SIV vector efficacy to humans will likely require deletion of all genes that inhibit these responses from the HCMV/HIV vector.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Reprogramação Celular/imunologia , Infecções por Citomegalovirus/veterinária , Citomegalovirus/imunologia , Doenças dos Macacos/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vacinas Virais/imunologia , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/metabolismo , Reprogramação Celular/genética , Engenharia Genética/métodos , Vetores Genéticos/genética , Imunogenicidade da Vacina , Memória Imunológica , Macaca mulatta , Doenças dos Macacos/imunologia , Doenças dos Macacos/virologia , Fases de Leitura Aberta/genética , Fases de Leitura Aberta/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Eficácia de Vacinas
9.
Nat Microbiol ; 6(1): 73-86, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33340034

RESUMO

Non-human primate models will expedite therapeutics and vaccines for coronavirus disease 2019 (COVID-19) to clinical trials. Here, we compare acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in young and old rhesus macaques, baboons and old marmosets. Macaques had clinical signs of viral infection, mild to moderate pneumonitis and extra-pulmonary pathologies, and both age groups recovered in two weeks. Baboons had prolonged viral RNA shedding and substantially more lung inflammation compared with macaques. Inflammation in bronchoalveolar lavage was increased in old versus young baboons. Using techniques including computed tomography imaging, immunophenotyping, and alveolar/peripheral cytokine response and immunohistochemical analyses, we delineated cellular immune responses to SARS-CoV-2 infection in macaque and baboon lungs, including innate and adaptive immune cells and a prominent type-I interferon response. Macaques developed T-cell memory phenotypes/responses and bystander cytokine production. Old macaques had lower titres of SARS-CoV-2-specific IgG antibody levels compared with young macaques. Acute respiratory distress in macaques and baboons recapitulates the progression of COVID-19 in humans, making them suitable as models to test vaccines and therapies.


Assuntos
COVID-19/veterinária , Callithrix/imunologia , Pulmão/imunologia , Macaca mulatta/imunologia , Doenças dos Macacos/virologia , Papio/imunologia , SARS-CoV-2/imunologia , Imunidade Adaptativa , Animais , Anticorpos Antivirais/imunologia , Lavagem Broncoalveolar , Líquido da Lavagem Broncoalveolar , COVID-19/diagnóstico por imagem , COVID-19/imunologia , COVID-19/patologia , Feminino , Humanos , Imunidade Celular/imunologia , Imunoglobulina G/imunologia , Inflamação/patologia , Pulmão/virologia , Masculino , Doenças dos Macacos/imunologia , Células Mieloides/imunologia , Carga Viral , Eliminação de Partículas Virais
10.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33087463

RESUMO

Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) continues to cause new pediatric cases of infection through breastfeeding, a setting where it is not always possible to initiate early antiretroviral therapy (ART). Without novel interventions that do not rely on daily ART, HIV-1-infected children face lifelong medications to control infection. A detailed analysis of virus persistence following breast milk transmission of HIV-1 and ART has not been performed. Here, we used infant rhesus macaques orally infected with simian/human immunodeficiency virus (SHIV) (SHIV.C.CH505) to identify cellular and anatomical sites of virus persistence under ART. Viral DNA was detected at similar levels in blood and tissue CD4+ T cells after a year on ART, with virus in blood and lymphoid organs confirmed to be replication competent. Viral RNA/DNA ratios were elevated in rectal CD4+ T cells compared to those of other sites (P ≤ 0.0001), suggesting that the gastrointestinal tract is an active site of virus transcription during ART-mediated suppression of viremia. SHIV.C.CH505 DNA was detected in multiple CD4+ T cell subsets, including cells with a naive phenotype (CD45RA+ CCR7+ CD95-). While the frequency of naive cells harboring intact provirus was lower than in memory cells, the high abundance of naive cells in the infant CD4+ T cell pool made them a substantial source of persistent viral DNA (approximately 50% of the total CD4+ T cell reservoir), with an estimated 1:2 ratio of intact provirus to total viral DNA. This viral reservoir profile broadens our understanding of virus persistence in a relevant infant macaque model and provides insight into targets for cure-directed approaches in the pediatric population.IMPORTANCE Uncovering the sanctuaries of the long-lived HIV-1 reservoir is crucial to develop cure strategies. Pediatric immunity is distinct from that of adults, which may alter where the reservoir is established in infancy. Thus, it is important to utilize pediatric models to inform cure-directed approaches for HIV-1-infected children. We used an infant rhesus macaque model of HIV-1 infection via breastfeeding to identify key sites of viral persistence under antiretroviral therapy (ART). The gastrointestinal tract was found to be a site for low-level viral transcription during ART. We also show that naive CD4+ T cells harbored intact provirus and were a major contributor to blood and lymphoid reservoir size. This is particularly striking, as memory CD4+ T cells are generally regarded as the main source of latent HIV/simian immunodeficiency virus (SIV) infection of adult humans and rhesus macaques. Our findings highlight unique features of reservoir composition in pediatric infection that should be considered for eradication efforts.


Assuntos
Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/veterinária , Macaca mulatta , Doenças dos Macacos/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Administração Oral , Animais , Animais Recém-Nascidos , DNA Viral/análise , Reservatórios de Doenças , Feminino , Infecções por HIV/imunologia , Infecções por HIV/transmissão , HIV-1 , Masculino , Doenças dos Macacos/imunologia , Doenças dos Macacos/transmissão , RNA Viral/análise , Vírus Reordenados/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral
11.
Zool Res ; 41(5): 503-516, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32772513

RESUMO

As of June 2020, Coronavirus Disease 2019 (COVID-19) has killed an estimated 440 000 people worldwide, 74% of whom were aged ≥65 years, making age the most significant risk factor for death caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To examine the effect of age on death, we established a SARS-CoV-2 infection model in Chinese rhesus macaques ( Macaca mulatta) of varied ages. Results indicated that infected young macaques manifested impaired respiratory function, active viral replication, severe lung damage, and infiltration of CD11b + and CD8 + cells in lungs at one-week post infection (wpi), but also recovered rapidly at 2 wpi. In contrast, aged macaques demonstrated delayed immune responses with a more severe cytokine storm, increased infiltration of CD11b + cells, and persistent infiltration of CD8 + cells in the lungs at 2 wpi. In addition, peripheral blood T cells from aged macaques showed greater inflammation and chemotaxis, but weaker antiviral functions than that in cells from young macaques. Thus, the delayed but more severe cytokine storm and higher immune cell infiltration may explain the poorer prognosis of older aged patients suffering SARS-CoV-2 infection.


Assuntos
Envelhecimento/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Citocinas/imunologia , Macaca mulatta/imunologia , Pneumonia Viral/imunologia , Linfócitos T/imunologia , Fatores Etários , Envelhecimento/metabolismo , Animais , Betacoronavirus/fisiologia , COVID-19 , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Inflamação/imunologia , Inflamação/veterinária , Inflamação/virologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macaca mulatta/virologia , Doenças dos Macacos/imunologia , Doenças dos Macacos/virologia , Pandemias/veterinária , Pneumonia Viral/veterinária , Pneumonia Viral/virologia , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/veterinária , Síndrome Respiratória Aguda Grave/virologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Carga Viral/imunologia , Carga Viral/veterinária , Replicação Viral/imunologia
12.
Front Immunol ; 11: 850, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528466

RESUMO

HIV-1 infection is transmitted primarily by sexual exposure, with semen being the principal contaminated fluid. However, HIV-specific immune response in semen has been understudied. We investigated specific parameters of the innate, cellular, and humoral immune response that may affect semen infectivity in macaques infected with SIVmac251. Serial semen levels of cytokines and chemokines, SIV-specific antibodies, neutralization, and FcγR-mediated functions and SIV-specific T-cell responses were assessed and compared to systemic responses across 53 cynomolgus macaques. SIV infection induced an overall inflammatory state in the semen. Several pro-inflammatory molecules correlated with SIV virus levels. Effector CD8+ T cells were expanded in semen upon infection. SIV-specific CD8+ T-cells that expressed multiple effector molecules (IFN-γ+MIP-1ß+TNF+/-) were induced in the semen of a subset of SIV-infected macaques, but this did not correlate with local viral control. SIV-specific IgG, commonly capable of engaging the FcγRIIIa receptor, was detected in most semen samples although this positively correlated with seminal viral load. Several inflammatory immune responses in semen develop in the context of higher levels of SIV seminal plasma viremia. These inflammatory immune responses could play a role in viral transmission and should be considered in the development of preventive and prophylactic vaccines.


Assuntos
Imunidade Humoral , Imunidade Inata , Ativação Linfocitária , Doenças dos Macacos/imunologia , Doenças dos Macacos/transmissão , Sêmen/imunologia , Sêmen/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Macaca fascicularis , Masculino , Doenças dos Macacos/sangue , Doenças dos Macacos/virologia , RNA Viral/sangue , Sêmen/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral
13.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32213610

RESUMO

Ebola virus (EBOV) continues to pose a significant threat to human health, as evidenced by the 2013-2016 epidemic in West Africa and the ongoing outbreak in the Democratic Republic of the Congo. EBOV causes hemorrhagic fever, organ damage, and shock culminating in death, with case fatality rates as high as 90%. This high lethality combined with the paucity of licensed medical countermeasures makes EBOV a critical human pathogen. Although EBOV infection results in significant damage to the liver and the adrenal glands, little is known about the molecular signatures of injury in these organs. Moreover, while changes in peripheral blood cells are becoming increasingly understood, the host responses within organs and lymphoid tissues remain poorly characterized. To address this knowledge gap, we tracked longitudinal transcriptional changes in tissues collected from EBOV-Makona-infected cynomolgus macaques. Following infection, both liver and adrenal glands exhibited significant and early downregulation of genes involved in metabolism, coagulation, hormone synthesis, and angiogenesis; upregulated genes were associated with inflammation. Analysis of lymphoid tissues showed early upregulation of genes that play a role in innate immunity and inflammation and downregulation of genes associated with cell cycle and adaptive immunity. Moreover, transient activation of innate immune responses and downregulation of humoral immune responses in lymphoid tissues were confirmed with flow cytometry. Together, these data suggest that the liver, adrenal gland, and lymphatic organs are important sites of EBOV infection and that dysregulating the function of these vital organs contributes to the development of Ebola virus disease.IMPORTANCE Ebola virus (EBOV) remains a high-priority pathogen since it continues to cause outbreaks with high case fatality rates. Although it is well established that EBOV results in severe organ damage, our understanding of tissue injury in the liver, adrenal glands, and lymphoid tissues remains limited. We begin to address this knowledge gap by conducting longitudinal gene expression studies in these tissues, which were collected from EBOV-infected cynomolgus macaques. We report robust and early gene expression changes within these tissues, indicating they are primary sites of EBOV infection. Furthermore, genes involved in metabolism, coagulation, and adaptive immunity were downregulated, while inflammation-related genes were upregulated. These results indicate significant tissue damage consistent with the development of hemorrhagic fever and lymphopenia. Our study provides novel insight into EBOV-host interactions and elucidates how host responses within the liver, adrenal glands, and lymphoid tissues contribute to EBOV pathogenesis.


Assuntos
Glândulas Suprarrenais , Ebolavirus , Regulação Viral da Expressão Gênica/imunologia , Doença pelo Vírus Ebola , Fígado , Tecido Linfoide , Doenças dos Macacos , Transcrição Gênica/imunologia , Glândulas Suprarrenais/imunologia , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/patologia , Glândulas Suprarrenais/virologia , Animais , Ebolavirus/imunologia , Ebolavirus/metabolismo , Feminino , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/veterinária , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Tecido Linfoide/virologia , Macaca fascicularis , Masculino , Doenças dos Macacos/imunologia , Doenças dos Macacos/metabolismo , Doenças dos Macacos/patologia , Doenças dos Macacos/virologia
14.
PLoS Negl Trop Dis ; 14(2): e0008027, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32049958

RESUMO

Zika virus (ZIKV) has spread in many countries or territories causing severe neurologic complications with potential fatal outcomes. The small primate common marmosets are susceptible to ZIKV, mimicking key features of human infection. Here, a novel simian adenovirus type 23 vector-based vaccine expressing ZIKV pre-membrane-envelope proteins (Sad23L-prM-E) was produced in high infectious titer. Due to determination of immunogenicity in mice, a single-dose of 3×108 PFU Sad23L-prM-E vaccine was intramuscularly inoculated to marmosets. This vaccine raised antibody titers of 104.07 E-specific and 103.13 neutralizing antibody (NAb), as well as robust specific IFN-γ secreting T-cell response (1,219 SFCs/106 cells) to E peptides. The vaccinated marmosets, upon challenge with a high dose of ZIKV (105 PFU) six weeks post prime immunization, reduced viremia by more than 100 folds, and the low level of detectable viral RNA (<103 copies/ml) in blood, saliva, urine and feces was promptly eliminated when the secondary NAb (titer >103.66) and T-cell response (>726 SFCs/106 PBMCs) were acquired 1-2 weeks post exposure to ZIKV, while non-vaccinated control marmosets developed long-term high titer of ZIKV (105.73 copies/ml) (P<0.05). No significant pathological lesions were observed in marmoset tissues. Sad23L-prM-E vaccine was detectable in spleen, liver and PBMCs at least 4 months post challenge. In conclusion, a prime immunization with Sad23L-prM-E vaccine was able to protect marmosets against ZIKV infection when exposed to a high dose of ZIKV. This Sad23L-prM-E vaccine is a promising vaccine candidate for prevention of ZIKV infection in humans.


Assuntos
Infecções por Adenoviridae/veterinária , Adenovirus dos Símios/classificação , Callithrix , Doenças dos Macacos/virologia , Infecção por Zika virus/veterinária , Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/virologia , Animais , Doenças dos Macacos/imunologia , Infecção por Zika virus/imunologia
15.
J Infect Dis ; 221(Suppl 4): S436-S447, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32022850

RESUMO

BACKGROUND: The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are capable of causing severe and often lethal respiratory and/or neurologic disease in animals and humans. Given the sporadic nature of henipavirus outbreaks, licensure of vaccines and therapeutics for human use will likely require demonstration of efficacy in animal models that faithfully reproduce the human condition. Currently, the African green monkey (AGM) best mimics human henipavirus-induced disease. METHODS: The pathogenic potential of HeV and both strains of NiV (Malaysia, Bangladesh) was assessed in cynomolgus monkeys and compared with henipavirus-infected historical control AGMs. Multiplex gene and protein expression assays were used to compare host responses. RESULTS: In contrast to AGMs, in which henipaviruses cause severe and usually lethal disease, HeV and NiVs caused only mild or asymptomatic infections in macaques. All henipaviruses replicated in macaques with similar kinetics as in AGMs. Infection in macaques was associated with activation and predicted recruitment of cytotoxic CD8+ T cells, Th1 cells, IgM+ B cells, and plasma cells. Conversely, fatal outcome in AGMs was associated with aberrant innate immune signaling, complement dysregulation, Th2 skewing, and increased secretion of MCP-1. CONCLUSION: The restriction factors identified in macaques can be harnessed for development of effective countermeasures against henipavirus disease.


Assuntos
Vírus Hendra , Infecções por Henipavirus/veterinária , Imunidade Celular , Imunidade Humoral , Macaca fascicularis , Vírus Nipah , Animais , Infecções por Henipavirus/virologia , Masculino , Doenças dos Macacos/imunologia , Doenças dos Macacos/virologia , Carga Viral , Tropismo Viral
16.
Comp Med ; 70(2): 160-169, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32014083

RESUMO

Olive baboons (P. anubis) have provided a useful model of human diseases and conditions, including cardiac, respiratory, and infectious diseases; diabetes; and involving genetics, immunology, aging, and xenotransplantation. The development of a immunologically defined SPF baboons has advanced research further, especially for studies involving the immune system and immunosuppression. In this study, we compare normal immunologic changes of PBMC subsets, and their function in age-matched conventional and SPF baboons. Our results revealed that both groups have comparable numbers of different lymphocyte subsets, but phenotypic differences in central and effector memory T-cell subsets are more pronounced in CD4+ T cells. Despite equal proportions of CD3+ T cells among the conventional and SPF baboons, PBMC from the conventional group showed greater proliferative responses to phytohemagglutinin and pokeweed mitogen and higher numbers of IFNγ-producing cells after stimulation with concanavalin A or pokeweed mitogen, whereas plasma levels of the inflammatory cytokine TNFα were significantly higher in SPF baboons. Exposure of PBMC from conventional baboons to various Toll-like (TLR) ligands, including TLR3, TLR4, and TLR8, yielded increased numbers of IFNγ producing cells, whereas PBMC from SPF baboons stimulated with TLR5 or TLR6 ligand had more IFNγ-producing cells. These findings suggest that although lymphocyte subsets share many phenotypic and functional similarities in conventional and SPF baboons, specific differences in the immune function of lymphocytes could differentially influence the quality and quantity of their innate and adaptive immune responses. These differences should be considered in interpreting experimental outcomes, specifically in studies measuring immunologic endpoints.


Assuntos
Imunidade Celular/imunologia , Doenças dos Macacos/imunologia , Animais , Feminino , Masculino , Papio , Papio anubis , Linfócitos T/imunologia
17.
Am J Primatol ; 82(2): e23093, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31930746

RESUMO

Ecoimmunological patterns and processes remain understudied in wild primates, in part because of the lack of noninvasive methods to measure immunity. Secretory immunoglobulin A (sIgA) is the most abundant antibody present at mammalian mucosal surfaces and provides an important first line of defense against pathogens. Recent studies show that sIgA can be measured noninvasively in feces and is a good marker of mucosal immunity. Here we validated a commercial ELISA kit to measure fecal IgA in baboons, tested the robustness of its results to variation in collection and storage conditions, and developed a cost-effective in-house ELISA for baboon fecal IgA. Using data from the custom ELISA, we assessed the relationship between fecal IgA concentrations and gastrointestinal parasite burden, and tested how sex, age, and reproductive effort predict fecal IgA in wild baboons. We find that IgA concentrations can be measured in baboon feces using an in-house ELISA and are highly correlated to the values obtained with a commercial kit. Fecal IgA concentrations are stable when extracts are stored for up to 22 months at -20°C. Fecal IgA concentrations were negatively correlated with parasite egg counts (Trichuris trichiura), but not parasite richness. Fecal IgA did not vary between the sexes, but for males, concentrations were higher in adults versus adolescents. Lactating females had significantly lower fecal IgA than pregnant females, but neither pregnant nor lactating female concentrations differed significantly from cycling females. Males who engaged in more mate-guarding exhibited similar IgA concentrations to those who engaged in little mate-guarding. These patterns may reflect the low energetic costs of mucosal immunity, or the complex dependence of IgA excretion on individual condition. Adding a noninvasive measure of mucosal immunity will promote a better understanding of how ecology modulates possible tradeoffs between the immune system and other energetically costly processes in the wild.


Assuntos
Ensaio de Imunoadsorção Enzimática/veterinária , Imunidade nas Mucosas , Imunoglobulina A/análise , Papio anubis/imunologia , Papio cynocephalus/imunologia , Manejo de Espécimes/veterinária , Fatores Etários , Animais , Animais Selvagens/imunologia , Animais de Zoológico/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Quênia , Masculino , Doenças dos Macacos/imunologia , Doenças dos Macacos/parasitologia , North Carolina , Reprodução , Fatores Sexuais , Manejo de Espécimes/métodos , Tricuríase/imunologia , Tricuríase/parasitologia , Tricuríase/veterinária , Trichuris/fisiologia
18.
J Med Primatol ; 49(1): 56-59, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31642533

RESUMO

Chronic inflammatory enteric diseases occur commonly in humans and animals, especially in captive bred macaques. However, information about the etiology of idiopathic chronic inflammatory diarrhea in cynomolgus monkeys is limited. In this paper, we reported the unusual case of idiopathic chronic diarrhea in a captive cynomolgus monkey based on microbial, imaging, and microbiome examinations.


Assuntos
Diarreia/veterinária , Disbiose/veterinária , Macaca fascicularis , Doenças dos Macacos/etiologia , Animais , Doença Crônica/veterinária , Diarreia/complicações , Diarreia/etiologia , Diarreia/imunologia , Disbiose/complicações , Disbiose/etiologia , Disbiose/imunologia , Feminino , Doenças dos Macacos/imunologia
19.
Arch Virol ; 164(5): 1297-1308, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30820667

RESUMO

We previously developed CCR5-tropic neutralization-resistant simian/human immunodeficiency virus (SHIV) strains and a rhesus macaque model of infection with these SHIVs. We induced the production of neutralizing antibodies (nAbs) against HIV-1 by infecting rhesus macaques with different neutralization-resistant SHIV strains. First, SHIV-MK1 (MK1) (neutralization susceptible, tier 1B) with CCR5 tropism was generated from SHIV-KS661 using CXCR4 as the main co-receptor. nAbs against parental-lineage and heterologous tier 2 viruses were induced by tier 1B virus (MK1) infection of the rhesus macaque MM482. We analyzed viral resistance to neutralization over time in MM482 and observed that the infecting virus mutated from tier 1B to tier 2 at 36 weeks postinfection (wpi). In addition, an analysis of mutations showed that N169D, K187E, S190N, S239, T459N (T459D at 91 wpi), and V842A mutations were present after 36 wpi. This led to the appearance of neutralization-resistant viral clones. In addition, MK1 was passaged in three rhesus macaques to generate neutralization-resistant SHIV-MK38 (MK38) (tier 2). We evaluated nAb production by rhesus macaques infected with SHIV-MK38 #818 (#818) (tier 2), a molecular clone of MK38. Neutralization of the parental lineage was induced earlier than in macaques infected with tier 1B virus, and neutralization activity against heterologous tier 2 virus was beginning to develop. Therefore, CCR5-tropic neutralization-resistant SHIV-infected rhesus macaques may be useful models of anti-HIV-1 nAb production and will facilitate the development of a vaccine that elicits nAbs against HIV-1.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , HIV-1/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Linhagem Celular , Células HEK293 , Humanos , Macaca mulatta , Doenças dos Macacos/imunologia , Doenças dos Macacos/virologia , Testes de Neutralização/métodos , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo
20.
Comp Med ; 69(1): 55-62, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30704552

RESUMO

Cytomegalovirus (CMV) is a common chronic herpesvirus found in humans and numerous other mammalian species. In people, chronic viruses like CMV can alter overall health and immunity and pose a serious risk for those with an inadequate immune system. In addition, CMV plays an important role in animal health, and could affect the health of vulnerable populations, like endangered species. Previous studies found a high rate of CMV seropositivity among adult baboons (Papio anubis), and results from our laboratory revealed that baboon CMV (BaCMV) seropositivity was correlated with altered immune cell populations. In the current study, we further characterized BaCMV infection in normal, adult baboons. Analysis of blood samples from baboons (age, 6 to 26 y) revealed a low overall prevalence of detectable of BaCMV DNA, with a higher detection rate in aged baboons (older than 15 y). Furthermore, data suggest that individual baboons maintain similar rates of recurrence and levels of BaCMV shedding in saliva over time. Finally, we evaluated multiple commercially available assays for antihuman CMV IgG and IgM for use with baboon sera. Results of this study will improve our understanding of BaCMV and may be directly relevant to other closely related species.


Assuntos
Infecções por Citomegalovirus/veterinária , Doenças dos Macacos/patologia , Papio anubis , Fatores Etários , Animais , Anticorpos Antivirais/sangue , Infecções por Citomegalovirus/sangue , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/patologia , DNA Viral/sangue , Doenças dos Macacos/sangue , Doenças dos Macacos/imunologia , Saliva/virologia , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...